KASR TARTIBLI UMUMLASHGAN RIMAN LIUVILL DIFFERENSIAL OPERATORLI TENGLAMA UCHUN TESKARI MASALA
Keywords:
Hilfer kasr hosilasi, boshlang‘ich chegaravir shart, Koshi masalasi, integral tenglama, mavjudlik, yagona , tekis yaqinlashuvchi qator.Abstract
Ushbu maqolada boshlang‘ich-nolokal chegaraviy shartli vaqt kasr to‘lqin tenglamasi uchun teskari masala o‘rganildi. Biz boshlang‘ich-nolokal chegaraviy shartli masalani tadqiq etishda, dastlab fazo o‘zgaruvchisiga bog‘liq spektral masala o‘rganildi. Spektral masalaning xos soni va xos funksiyalari aniqlandi. Vaqt o‘zgaruvchisi bo‘yicha Koshi masalasi olindi. Bu Koshi masalasi ekvivalent bo‘lgan integral tenglama olindi. Integral tenglamaning yechimi mavjudligi va yagonaligi isbotlandi. So‘ngra boshlang‘ich chegaraviy masala yechimi qator ko‘rinishda izlaymiz. Qatorning tekis darajada uzluksizligi isbotlaymiz. Shundan so‘ng kasr tartibli umumlashgan Riman Liuvill differensial operatorli tenglama uchun teskari masala” tadqiq etamiz, unda to‘g‘ri masala yechimiga qo‘shimcha shart berish orqali tenglamada qatnashuvchi nomalum koeffitsiyentni aniqlash masalasi o‘rganamiz. Bunda asosan teskari masala unga ekvivalent integral tenglamaga keltiramiz, so‘ngra siqiluvchan akslantirishlar prinsipi yordamida teskari masalaning yechimi mavjudligi va yagonaligi isbotlaymiz.
References
1. R Hilfer, Applications of Fractional Calculus in Physics, World Scientific: Singapore, 2000.
2. I. Podlubny, Fractional Differential Equations, of Mathematics in Science and Engineering, vol. 198, Academic Press, New York, NY, USA, 1999.
3. R . Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 2009, Vol. 12 No.3, pp. 299-318.
4. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differetial equations, North–Holland Mathematical Studies, Amsterdam: Elsevier, 2006.
5. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, Yveron, 1993.
6. R. Ashurov, A. Cabada, B. Turmetov, Operator method for construction of solutions of linear fractional differential equations with constant coefficients, Fract. Calc. Appl. Anal. 2016, Vol. 19, No 1, pp. 229-252.
7. R. Ashurov, S. Umarov, Determination of the order of fractional derivative for subdiffusion equations, Fract. Calc. Appl. Anal., 2020, Vol. 23, No 6, pp. 1647-1662.
8. Sh. Alimov, R. Ashurov, Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation, Journal of Inverse and Ill-posed Problems, Vol. 28, No 5 (2020), pp. 651-658
9. P. Agarwal, A. S. Berdyshev, E. T. Karimov, Solvability of a nonlocal problem with integral transmitting condition for mixed type equation with Caputo fractional derivative, Results Math., Vol. 71, pp.1235-1257, 2017.
10. M. S. Salakhitdinov, E. T. Karimov, Uniqueness of an inverse source non-local problem for fractional order mixed type equations, Eurasian Math. J., Vol. 7, pp. 74-83, 2016.
11. E. Karimov, M. Mamchuev, M. Ruzhansky, Non-local initial problem for second order time-fractional and space-singular equation, Commun. in Pure and Appl. Anal. Vol. 49, No 2, pp. 1-9, 2017.
12. D. K. Durdiev, Z. D. Totieva, The problem of determining the one-dimensional matrix kernel of the system of visco-elasticity equation, Math Met Appl Scie; Vol. 41, No17, pp.8019-8032, 2018.
13. D. K. Durdiev, Kh. Kh. Turdiev, The problem of finding the kernels in the system of integro-differential Maxwell’s equations, Sib. Zh. Ind. Math., Vol. 24:2, 38-61. 2021
14. D. K. Durdiev, Kh. Kh. Turdiev, An Inverse Problem for a First Order Hyperbolic System with Memory, Differentsial’nye Uravneniya, Vol. 56 (12), pp. 1666-1675, 2020.
15. U. D. Durdiev, Z. D. Totieva, A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation, Math. Met. Appl. Scie., Vol.42(18), pp. 7440-7451, 2019.
16. D. K. Durdiev, Inverse coefficient problem for the time-fractional diffusion equation, Eurasian Journal of Mathematical and Computer Applications. Vol. 9 (1), pp. 44-54, 2022.
17. U. D. Durdiev Problem of determining the reaction coefficient in a fractional diffusion equation, Differential Equations, Vol. 57 (9), pp. 1195-1204, 2021.
18. D. K. Durdiev, A. A. Rahmonov, A multidimensional diffusion coefficient determination problem for the time-fractional equation. Turk L Math, Vol. 46, pp. 2250-2263, 2022.
19. D. Henry, Geometric Theory of Semi linear Parabolic Equations, Berlin. Germany. 1981.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.