INNOVATIVE METHODS IN SYNTHESIZING ORGANOMETAL HALIDE PEROVSKITES FOR ENHANCED SOLAR CELL EFFICIENCY
Keywords:
Perovskite Solar Cells (PSCs) ,Organo- metal halide perovskites, Interface functionalization, Cryo-controlled nucleation, Core-shell metal nanoparticles,Power conversion efficiency (PCE), Photovoltaics, Scalability, Stability, Efficiency, Solar EnergyAbstract
The pursuit of efficient and stable perovskite solar cells (PSCs) has led to the development of several innovative synthesis methods for organometal halide perovskites. This study reviews seven key techniques that have significantly enhanced the performance and stability of PSCs. These methods include Hybrid Chemical Vapor Deposition (HCVD), Hydrochloric Acid Vapor Annealing (HAVA), interface functionalization, cryo-controlled nucleation, the incorporation of core-shell metal nanoparticles, tantalum-doped TiO2 nanorods, and sequential vacuum deposition. HCVD allows for precise control of deposition parameters, achieving efficiencies up to 11.8%. HAVA enhances structural and electronic properties by converting CH3NH3PbI3 to phase-pure CH3NH3PbCl3, increasing efficiency to 17.40%. Interface functionalization with organometallic compounds such as ferrocenyl-bis-thiophene-2-carboxylate has achieved efficiencies of 25.0% and maintained stability over long-term operation. Cryo-controlled nucleation creates highly uniform films, reaching a PCE of 21.4%. The integration of core-shell metal nanoparticles reduces exciton binding energy, achieving efficiencies of up to 11.4%. Tantalum doping in TiO2 nanorods enhances electron transport and band alignment, resulting in a record efficiency of 19.11%. Sequential vacuum deposition produces uniform, highly crystalline perovskite films, achieving efficiencies up to 15.4%. These advancements address key challenges in the scalability, stability, and efficiency of PSCs, paving the way for the commercial viability of high-performance perovskite-based photovoltaics. Continued research and optimization of these methods will drive further progress in the field.
References
1. Lin, H., Zhou, C., Tian, Y., Siegrist, T., & Ma, B. (2018). Low-Dimensional Organometal Halide Perovskites. ACS energy letters, 3, 54-62.
2. Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H., & Yang, S. (2013). All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays.. Nanoscale, 5 8, 3245-8 .
3. Xiaoming Li et al. "All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical
4. Xiaoyu Yang et al. "Dual Functional Molecular Imprinted Polymers-Modified Organometal Lead Halide Perovskite: Synthesis and Application for Photoelectrochemical Sensing of Salicylic Acid.." Analytical chemistry (2019).
5. Feng Zhu et al. "Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals.." ACS nano, 9 3 (2015): 2948-59 .
6. Singh, S., & Nagarjuna, P. (2014). Organometal halide perovskites as useful materials in sensitized solar cells.. Dalton transactions, 43 14, 5247-51 .
7. Aharon, S., & Etgar, L. (2016). Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.. Nano letters, 16 5, 3230-5 .
8. Tong, G., Zhang, J., Bu, T., Ono, L., Zhang, C., Liu, Y., Ding, C., Wu, T., Mariotti, S., Kazaoui, S., & Qi, Y. (2023). Holistic Strategies Lead to Enhanced Efficiency and Stability of Hybrid Chemical Vapor Deposition Based Perovskite Solar Cells and Modules. Advanced Energy Materials, 13.
9. Leyden, M., Ono, L., Raga, S., Kato, Y., Wang, S., & Qi, Y. (2014). High performance perovskite solar cells by hybrid chemical vapor deposition. Journal of Materials Chemistry, 2, 18742-18745.
10. Ng, A., Ren, Z., Shen, Q., Cheung, S., Gokkaya, H., So, S., Djurišić, A., Wan, Y., Wu, X., & Surya, C. (2016). Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells.. ACS applied materials & interfaces, 8 48, 32805-32814 .
11. Luo, P., Liu, Z., Xia, W., Yuan, C., Cheng, J., & Lu, Y. (2015). Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions.. ACS applied materials & interfaces, 7 4, 2708-14 .
12. Gokkaya, H., Qian, S., Ren, Z., Ng, A., & Surya, C. (2017). Investigation of High Performance Perovskite-based Solar Cells Grown by Hybrid Chemical Vapor Deposition Technique. .
13. Wei, X., Peng, Y., Jing, G., Simon, T., & Cui, T. (2020). High-Performance Perovskite Solar Cells Fabricated by a Hybrid Physical–Chemical Vapor Deposition. Journal of Solar Energy Engineering-transactions of The Asme, 1-30.
14. Yu, C., Kye, Y., Jong, U., Ri, K., Choe, S., Kim, J., Ko, S., Ryu, G., & Kim, B. (2019). Interface Engineering in Hybrid Iodide CH3NH3PbI3 Perovskite Using Lewis Base and Graphene towards High Performance Solar Cells.. ACS applied materials & interfaces.
15. L. Najafi et al. "MoS2 Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH3NH3PbI3 Perovskite Solar Cell with an Efficiency of over 20.." ACS nano, 12 11 (2018): 10736-10754 .
16. Yan Li et al. "Multifunctional Histidine Cross-Linked Interface toward Efficient Planar Perovskite Solar Cells.." ACS applied materials & interfaces (2022).
17. Bowei Li et al. "Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells." Nano Energy, 78 (2020): 105249.
18. Weiran Zhou et al. "Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH3NH3PbI3 to Phase-Pure CH3NH3PbCl3 via Hydrochloric Acid Vapor Annealing Post-Treatment.." ACS applied materials & interfaces, 10 2 (2018): 1897-1908 .
19. Binbin Wang et al. "Room-temperature water-vapor annealing for high-performance planar perovskite solar cells." Journal of Materials Chemistry, 4 (2016): 17267-17273.
20. Sun, X., Zhang, C., Chang, J., Yang, H., Xi, H., Lu, G., Chen, D., Lin, Z., Lu, X., Zhang, J., & Hao, Y. (2016). Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement. Nano Energy, 28, 417-425.
21. Yu, H., Liu, X., Xia, Y., Dong, Q., Zhang, K., Wang, Z., Zhou, Y., Song, B., & Li, Y. (2016). Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells. Journal of Materials Chemistry, 4, 321-326.
22. A. Ng et al. "Cryo-controlled Nucleation Method for High-efficiency Perovskite Solar Cells." 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (2018): 503-507.
23. Bi, D., Yi, C., Luo, J., Décoppet, J., Zhang, F., Zakeeruddin, S., Li, X., Hagfeldt, A., & Grätzel, M. (2016). Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 1.
24. Wang, G., Liao, L., Niu, L., Chen, L., Li, W., Xu, C., Mbeng, E., Yao, Y., Liu, D., & Song, Q. (2019). Nuclei position-control and crystal growth-guidance on frozen substrates for high-performance perovskite solar cells.. Nanoscale.
25. Zhang, W., Saliba, M., Stranks, S., Sun, Y., Shi, X., Wiesner, U., & Snaith, H. (2013). Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.. Nano letters, 13 9, 4505-10 .
26. Q. Luo et al. "Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells.." ACS applied materials & interfaces, 9 40 (2017): 34821-34832 .
27. Kai Yao et al. "Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells.." ACS nano, 13 5 (2019): 5397-5409 .
28. Jangjoy, A., & Matloub, S. (2023). Theoretical study of Ag and Au triple core-shell spherical plasmonic nanoparticles in ultra-thin film perovskite solar cells.. Optics express, 31 12, 19102-19115 .
29. Cui, Q., Zhao, X., Lin, H., Yang, L., Chen, H., Zhang, Y., & Li, X. (2017). Improved efficient perovskite solar cells based on Ta-doped TiO2 nanorod arrays.. Nanoscale, 9 47, 18897-18907
30. Hsu, C., Chen, K., Lin, L., Wu, W., Liang, L., Gao, P., Qiu, Y., Zhang, X., Huang, P., Lien, S., & Zhu, W. (2021). Tantalum-Doped TiO2 Prepared by Atomic Layer Deposition and Its Application in Perovskite Solar Cells. Nanomaterials, 11.
31. Duan, Y., Zhao, G., Liu, X., Ma, J., Chen, S., Song, Y., Pi, X., Yu, X., Yang, D., Zhang, Y., & Guo, F. (2021). Low-temperature processed tantalum/niobium co-doped TiO2 electron transport layer for high-performance planar perovskite solar cells. Nanotechnology, 32.
32. Ranjan, R., Prakash, A., Singh, A., Singh, A., Garg, A., & Gupta, R. (2018). Effect of tantalum doping in a TiO2 compact layer on the performance of planar spiro-OMeTAD free perovskite solar cells. Journal of Materials Chemistry, 6, 1037-1047.
33. Zhang, J., Zhao, Y., Yang, D., Li, C., & Liu, S. (2016). Highly stabilized perovskite solar cell prepared using vacuum deposition. RSC Advances, 6, 93525-93531.
34. Yuan, Q., Lohmann, K., Oliver, R., Ramadan, A., Yan, S., Ball, J., Christoforo, M., Noel, N., Snaith, H., Herz, L., & Johnston, M. (2022). Thermally Stable Perovskite Solar Cells by All-Vacuum Deposition. ACS Applied Materials & Interfaces, 15, 772 - 781.
35. Burschka, J., Pellet, N., Moon, S., Humphry‐Baker, R., Gao, P., Nazeeruddin, M., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316-319.
36. Li, H., Zhou, J., Tan, L., Li, M., Jiang, C., Wang, S., Zhao, X., Liu, Y., Zhang, Y., Ye, Y., Tress, W., & Yi, C. (2022). Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency.. Science advances, 8 28, eabo7422 .
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.