NEFT UGLEVODORODLARINING SHO‘RLANGAN HUDUDLARDA TUPROQ QOPLAMLARI VA ATROF-MUHITIGA TA’SIRI

Authors

  • Zafarjon Jabbarov Abdukarimovich Author
  • Urol Mamatrayimovich, Nomozov Author
  • Оtаmurоd Nоrmаmаtоvich Imоmоv Author
  • Shоhruh Zаfаr o‘g‘li Аbdullаyеv Author

Keywords:

Medicago falcata L, Tagetes erecta L va Sorghum saccharatum o‘simliklar, tuproq, neft uglevodorodlari, sho‘rlanish hamda ifloslanish darajalaridan iborat.

Abstract

. Maqolada tadqiqot hududi tuproqlarini neft uglevodorodlari bilan ifloslanishi iqlim omillari ta’sirida ifloslanishi, ifloslanish maydonlari eltirilgan bo‘lib, birinchi tadqiqot hududi Qumqo‘rg‘on neft saqlash ombori (Kqno) himoya zonasidan 0,2 km uzoqlikda neft uglevodorodlar miqdori 5,6 g/kg, 3,0 km uzoqlikda 4,8 g/kg hamda 8,0 km uzoqlikda 4,6 g/kg miqdorda borligi aniqlandi. Ikkinchi tadqiqot hududi Janubiy Mirshodi neft koni (Kjm) himoya zonasidan 0,2 km uzoqlikda 9,0 g/kg, 1,5 km uzoqlikda 8,2 g/kg hamda 8,0 km uzoqlikda 4,4 g/kg miqdorda ifloslanganligi aniqlandi. Ifloslanishning eng yuqori darajasi Kjm-0,2 kesmasida ekanligi va neft konidan chiqadigan neft mahsulotlari tuproq qoplamiga tushishini hisobiga ekanligi bilan izohlanadi. Qumqo‘rg‘on neft saqlash ombori (Kqno) atrofida ifloslangan bo‘lib asosan ifloslanishi neft omborida saqlanadigan neftning issiqlik ta’sirida atmosferaga bug‘lanishi va shamol yordamida uzoqroq maydonlarga yoyilishi van am havoning hisobiga atrof-muhit va tuproq qoplamiga kirib borishining hisobiga ifloslanishi aniqlandi.

 

References

1. Cook J., Oreskes N., Doran P.T., Anderegg W.R., Verheggen B., Maibach E.W., Rice K. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming // Environmental research letters. Vol. 11(4). 2016. P. 048002. doi:10.1088/1748-9326/11/4/048002.

2. Ossai, I.C., Ahmed, A., Hassan, A., Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review // Environmental Technology & Innovation. Vol.17. 2020. 100526. https://doi.org/10.1016/j.eti.2019.100526.

3. Brown, L.D., Ulrich, A.C. Bioremediation of oil spills on land // Handbook of oil spill science and technology. 2014. P. 395-406. https://doi.org/10.1002/9781118989982.ch15.

4. Chandra S., Sharma R., Singh K., & Sharma A. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon // Annals of microbiology.Vol. 63. 2013. P. 417-431.

5. Kalia A., Sharma S., Semor N., Babele P. K., Sagar S., Bhatia R. K., Walia A. Recent advancements in hydrocarbon bioremediation and future challenges: a review // 3 Biotech.12.(6). №135. 2022. P. 1-16.

6. Hussain I., Puschenreiter M., Gerhard S., Schöftner P., Yousaf S., Wang A., Reichenauer T.G. Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications // Environmental and Experimental Botany. №147. 2018. P. 202-219. https://doi.org/10.1016/j.envexpbot.2017.12.016.

7. Pathak H.K., Chauhan P.K., Seth C.S., Dubey G., Upadhyay, S.K. Mechanistic and future prospects in rhizospheric engineering for agricultural contaminants removal, soil health restoration, and management of climate change stress // Science of The Total Environment. Vol. 927. 2024. P. 172116. https://doi.org/10.1016/j.scitotenv.2024.172116.

8. Sarma H., Gogoi B., Guan C.Y., Yu C.P. Nitro-PAHs: Occurrences, ecological consequences, and remediation strategies for environmental restoration // Chemosphere. Vol.356. 2024. P.141795. https://doi.org/10.1016/j.chemosphere.2024.141795.

9. Bandowe B.A.M., Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment–a review // Science of the total environment. Vol. 581. 2017. P. 237-257. https://doi.org/10.1016/j.scitotenv.2016.12.115.

10. Arora N.K., Fatima T., Mishra I., Verma M., Mishra J., Mishra V. Environmental sustainability: challenges and viable solutions // Environmental Sustainability. Vol.1. 2018. P. 309-340. https://doi.org/10.1007/s42398-018-00038-w.

11. Akinsemolu A.A. The role of microorganisms in achieving the sustainable development goals // Journal of cleaner production. Vol. 182. 2018. P.139-155. https://doi.org/10.1016/j.jclepro.2018.02.081.

12. Kauppi S., Sinkkonen A., Romantschuk M. Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: comparison of biostimulation and bioaugmentation // International Biodeterioration & Biodegradation. Vol.65. Issue 2. 2011. P.359-368. https://doi.org/10.1016/j.ibiod.2010.10.011.

13. Masyagina O.V., Matvienko A.I., Ponomareva T.V., Grodnitskaya I.D., Sideleva E.V., Kadutskiy V.K., Evgrafova S.Y. Soil contamination by diesel fuel destabilizes the soil microbial pools: Insights from permafrost soil incubations // Environmental Pollution. Vol. 323. 2023. P. 121269. https://doi.org/10.1016/j.envpol.2023.121269.

14. Jabbarov, Z., Nomozov, U., Kenjaev, Y., Abdushukurova, Z., Zakirova, S., Mahkamova, A., Yuldashev, G. Effects of pollution of saline soils with oil and oil products on soil physical properties // In E3S Web of Conferences Vol. 497, p. 03006. EDP Sciences. https://doi.org/10.1051/e3sconf/202449703006

15. Jabbarov Z., Abdrakhmanov T., Sultonova N., Abdullaev S., Nomozov U., Cabelkova I., Smutka L. Soil contamination and changes in some properties of the soils scattered around the Almalyk mining and metallurgical combine // In E3S Web of Conferences (Vol. 508, p. 07001). 2024. EDP Sciences. https://doi.org/10.1051/e3sconf/202450807001.

16. Biswas B., Qi F., Biswas J.K., Wijayawardena A., Khan M.A.I., Naidu R. The fate of chemical pollutants with soil properties and processes in the climate change paradigm - A review // Soil Systems. Vol.2 Issue 3. 2018. P. 51. doi.org/10.3390/soilsystems2030051.

17. Frank D., Reichstein M., Bahn M., Thonicke K., Frank D., Mahecha M. D., Zscheischler J. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts // Global change biology. Vol. 21. Issue 8. 2015. P. 2861-2880. https://doi.org/10.1111/gcb.12916.

18. Cao M., Woodward F.I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change // Global Change Biology. Vol. 4. Issue 2. 1998. P. 185-198. https://doi.org/10.1046/j.1365-2486.1998.00125.x.

19. Garcia-Pichel F., Loza V., Marusenko Y., Mateo P., Potrafka R.M. Temperature drives the continental-scale distribution of key microbes in topsoil communities // Science. Vol. 340. Issue 6140. 2013. Pp. 1574-1577. DOI: 10.1126/science.1236404.

20. Varjani S.J., Upasani V.N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants // International Biodeterioration & Biodegradation. Vol. 120. 2017. Pp. 71-83. https://doi.org/10.1016/j.ibiod.2017.02.006.

21. Poddar K., Sarkar D., Sarkar A. Construction of potential bacterial consortia for efficient hydrocarbon degradation // International biodeterioration & biodegradation. Vol. 144. 2018. P. 104770. https://doi.org/10.1016/j.ibiod.2019.104770.

22. Abdel-Shafy H.I., Mansour M.S.M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation // Egypt J Pet. Vol. 25. Issue 1. 2016. P. 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.

23. Shang D., Kim M., Haberl M. Rapid and sensitive method for the determination of polycyclic aromatic hydrocarbons in soils using pseudo multiple reaction monitoring gas chromatography/tandem mass spectrometry // Journal of Chromatography A. Vol. 1334. 2014. P. 118-125. https://doi.org/10.1016/j.chroma.2014.01.074.

24. Rayner J.L., Snape I., Walworth J.L., Harvey P.M., Ferguson S.H. Petroleum–hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island // Cold Regions Science and Technology. Vol. 48. Issue 2. 2007. P. 139-153. https://doi.org/10.1016/j.coldregions.2006.11.001.

25. Delille D., Pelletier E., Coulon F. The influence of temperature on bacterial assemblages during bioremediation of a diesel fuel contaminated subAntarctic soil // Cold Regions Science and Technology. Vol. 48. Issue 2. 2007. P. 74-83. https://doi.org/10.1016/j.coldregions.2005.09.001.

26. Shaygan M., Mulligan D., Baumgartl T. The potential of three halophytes (Tecticornia pergranulata, Sclerolaena longicuspis, and Frankenia serpyllifolia) for the rehabilitation of brine‐affected soils // Land degradation & development. Vol. 29. Issue 6. 2018 P. 2002-2014. https://doi.org/10.1002/ldr.2954.

27. Singha L.P., Pandey P. Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil // Critical Reviews in Biotechnology. Vol. 41. Issue 5. 2021. P. 749-766. https://doi.org/10.1080/07388551.2021.1888066.

28. Cheng L., Zhou Q., Yu B. Responses and roles of roots, microbes, and degrading genes in rhizosphere during phytoremediation of petroleum hydrocarbons contaminated soil // International journal of phytoremediation. Vol. 21. Issue 12. 2019. P. 1161-1169. https://doi.org/10.1080/15226514.2019.1612841.

29. Singha LP., Pandey P. Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil // Critical Reviews in Biotechnology. Vol. 41. Issue 5. 2021. P. 749-766. https://doi.org/10.1080/07388551.2021.1888066.

30. Жаббаров З.А. Ўзбекистоннинг жанубий ҳудуди чўл тупроқларининг нефт ва нефт маҳсулотлари билан ифлосланиши ва уларнинг рекултивaцияси. Докт. дисс. ТАИТИ, 2017. 238 б.

Downloads

Published

2024-09-30

How to Cite

Jabbarov Abdukarimovich, Z., Nomozov , U. M., Imоmоv О. N., & Аbdullаyеv S. Z. o‘g‘li. (2024). NEFT UGLEVODORODLARINING SHO‘RLANGAN HUDUDLARDA TUPROQ QOPLAMLARI VA ATROF-MUHITIGA TA’SIRI. RESEARCH AND EDUCATION, 3(8), 32-44. http://researchweb.uz/index.php/researchedu/article/view/58

Similar Articles

31-39 of 39

You may also start an advanced similarity search for this article.